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ABSTRACT: 
 
The call for the development of geographical information systems that can handle uncertain data dates back at least twenty years.  
Many research groups have since worked on the design of an ‘error-aware GIS’, but very few – perhaps none – have reached the 
operational stage.  Recently, the Data Uncertainty Engine (DUE) was developed to fill this gap.  DUE assists users in the assessment 
of uncertainties in environmental data and stores these in a spatio-temporal database.  Uncertain environmental data are represented 
in DUE as objects whose positions and attribute values may be uncertain.  Uncertainty is quantified with probability distribution 
functions, both for numerical and categorical data types.  Spatial correlation between the vertices that define an object’s position or 
between the point values of a spatially distributed attribute at multiple locations is also accommodated for.  Both expert judgement 
and sample data may be used to help estimate the parameters of the probability distributions.  DUE must be used alongside a GIS 
because it cannot do standard GIS operations, such as spatial queries, overlay, or visualisation.  It is an add-on that can read and 
write common formats and can generate multiple realisations (i.e., random draws from the probability distribution) of an uncertain 
object.  The realisations may be used in a Monte Carlo uncertainty propagation analysis or for communicating uncertainty to a target 
audience with limited background in statistics.  The use of DUE has now surpassed the development stage that illustrated its use with 
synthetic examples.  It is now being used in large projects to solve real-world problems.  In this paper, three examples are given.  
These are: (1) the modelling, storage and simulation of uncertain soil profile and pesticide properties in a project that analyses how 
uncertainty in these properties affects the accuracy of the estimated nationwide leaching of pesticides in the Netherlands; (2) the 
stochastic simulation of spatially correlated soil aluminium and iron content in a project that assesses the water quality of the river 
Regge catchment; and (3) the handling of positional uncertainty in the delineation of breeding bird areas in a spatial planning project 
in the South of the Netherlands. 
 
 

1. INTRODUCTION 

When data that are stored in spatial databases are inaccurate 
then the results of spatial analyses that use these data as input 
will be inaccurate too.  The awareness that uncertainty 
propagates through spatial analyses and may produce poor 
results that lead to wrong decisions has triggered a lot of 
research on spatial accuracy assessment and data quality 
management in GIS (e.g., Heuvelink 1998, Shi et al. 2002).  
The ideal system that can cope with spatial data quality is that 
of an ‘error-aware’ GIS, which can assess and store the 
uncertainties associated with its data and can analyse and 
present the propagation of uncertainty in GIS analyses.  
Burrough (1992) sketched an ‘intelligent’ GIS that would have 
all of these capabilities and would in addition be able to advise 
users on how best to improve the quality of their results, either 
by using better models, collecting more or better data, or 
improving resolution.  Duckham (2002) and Duckham and 
McCreadie (2002) laid down a design of how an ‘error-aware’ 
or ‘error-sensitive’ GIS should look like, but the concepts and 
ideas presented seem not to have made it to the operational 
stage.  Karssenberg and De Jong (2005) extended the PCRaster 
software with uncertainty propagation functionality, but the 
focus of their work was on the implementation of Monte Carlo 
uncertainty propagation routines, not on the assessment and 
storage of spatial data accuracy.   
 
Recently, the Data Uncertainty Engine (DUE) was developed to 
provide a tool that comes close to an operational ‘error-aware’ 

GIS (Brown and Heuvelink 2007, Heuvelink et al. 2007).  DUE 
helps users to assess and store uncertainties in environmental 
data and provides functions to generate realisations (random 
draws) of uncertain data for visualisation of uncertainty and use 
in uncertainty propagation analyses.  
 
DUE takes a probabilistic approach to represent uncertainty in 
the position and attribute values of spatial objects.  The 
rationale behind this approach is that because of uncertainty, 
the true state of the environment is not precisely known, but 
only to some degree.  In other words, it is based on the premise 
that the person or organisation is not completely ignorant but is 
able to characterise the state with a probability distribution 
function.  For instance, the annual greenhouse gas emission of a 
country cannot be measured or calculated exactly and is 
therefore uncertain.  However, expert judgement, measurements 
and models do provide the means to provide an estimate of the 
annual emission and quantify the associated estimation error.  
Thus, the annual emission may be represented by a probability 
distribution function (pdf), which essentially lists all possible 
outcomes and their associated probabilities. 
 
In this paper we summarise the theory and concepts behind 
DUE, its functionality and user-interface, and illustrate its use 
in practice with three real-world examples.  For a detailed 
account of DUE, see Brown and Heuvelink (2007). 
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2. PROBABILITY MODELS FOR POSITIONAL AND 
ATTRIBUTE UNCERTAINTY 

2.1 Positional uncertainty 

In order to describe the positional uncertainty of an 
environmental object, it is useful to classify objects by their 
primitive parts and by the types of movement they support 
under uncertainty.  A first-order classification would include: 
 
1. Objects that are single points (point objects); 
2. Objects that comprise multiple points whose relative 

positions cannot change under uncertainty (rigid objects); 
3. Objects that comprise multiple points whose relative 

position can vary under uncertainty (deformable objects). 
 
The positional uncertainty of a point object always leads to a 
unitary shift in the object’s position in the x- and y-direction 
(assuming two-dimensional space).  The positional uncertainty 
of a rigid object comprises a uniform translation of its internal 
points and rotation of the object about an origin.  By 
implication, positional uncertainty cannot alter the topology of 
a rigid object.  In contrast, the topology of a deformable object 
may be altered and corrupted by positional uncertainty because 
the uncertainties in its primitive points are partially or 
completely independent of each other.  Topological corruption 
of deformable objects can be prevented in practice by 
discarding random samples from the pdf whose topological 
relations are deemed invalid.  
 
We develop a general probability model for each class of object 
distinguished above.  Because of uncertainty, the ‘true’ value of 
the coordinates of a point object (e.g. x) is unknown and hence 
it is represented as a random variable X with a marginal 
probability distribution function FX: 

 )xX(P)x(FX ≤=  (1) 

where x is a real number and P is probability.  The pdf FX must 
be a continuous, non-decreasing, function, whose limit values 
are FX(−∞)=0 and FX(+∞)=1.  Marginal distributions may be 
defined for both coordinates of an uncertain point object.  
When the uncertainties in the coordinates are statistically 
dependent, a multivariate or joint pdf is required: 

 )yY,xX(P)y,x(FXY ≤≤=  (2) 

When the uncertain coordinates are independent, the joint pdf is 
simply the product of the two marginal pdfs. 
 
Rigid objects comprise multiple points whose internal angles 
and distances cannot change under uncertainty.  However, the 
object may rotate, as well as shift, under uncertainty.  In 
practice, the movement of a rigid object, and hence its 
positional uncertainty, is completely characterised by the 
translation and rotation of a single point associated with that 
object (e.g. its centroid).  Thus, a joint pdf is required for the 
coordinates of the reference point together with the rotation 
angle. 
 
Deformable objects comprise multiple points whose internal 
distances and angles can vary under uncertainty.  As such, the 
positional uncertainty of a deformable object cannot be 
described with a simple translation and rotation of the object, 
but requires a separate pdf for each primitive point, together 

with the internal relations (correlations) between these points.  
Thus, for a two-dimensional object containing n primitive 
points, a 2n-dimensional pdf is required:  
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In practice, it is rarely realistic to derive Eqn. (3) as the product 
of n pdfs specified in Eqn. (2) because data collection and pre-
processing will introduce statistical dependencies between 
points.  For example, GPS surveys, georeferencing of remote 
sensing data, and manual digitising of paper maps will all 
introduce positive correlations between positional uncertainties 
(see also De Bruin et al. 2007). 
 
 
2.2 Attribute uncertainty 

In order to develop probability models for attribute uncertainty, 
it is useful to distinguish between the measurement scales of an 
attribute. Important classes of measurement scale are the 
continuous numerical scale (e.g. air humidity), the discrete 
numerical scale (e.g. bird counts) and the categorical scale (e.g. 
soil type).  In addition, attributes can be constant in space or 
vary in space. 
 
An uncertain continuous numerical constant C is characterised 
by its pdf: 

 c)P(C(c)FC ≤=  (4) 

The pdf for a discrete numerical or categorical constant is: 

 )cP(C)(cF iiC ==  (5) 

where the ci (i=1,..,m) are numbers or categories, respectively.  
Each of the FC(ci) should be non-negative and the sum of all 
FC(ci) should equal 1. 
 
An uncertain continuous numerical variable V that varies in 
space is characterised by: 

 )v)V(s,,v)P(V(s)s,v,s,(vF nn11nn11V ≤≤= ��  (6) 

where the si are coordinates (i.e., si comprises xi and yi) and n 
may assume any integer value.  FV must be known for each and 
every combination of the vi and si.  The corresponding pdf for a 
discrete numerical or categorical variable that is spatially 
variable is: 

 )v)V(s,,v)P(V(s)s,v,,s,(vF nn11nn11V === ��  (7) 

where the vi are integers or categories, respectively.  The pdfs 
Simplifying assumptions are typically needed to estimate the 
pdfs (6) and (7) in practice.  This is discussed in the next 
section. 
 
 
2.3 Estimation of pdfs 

The probability models defined in the previous section must be 
specified for each particular case.  This typically involves a 
trade-off between the complexity of the pdf and the amount of 
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information available to estimate it.  A common assumption is 
that the pdf follows a simple shape, such as the ‘Normal’ or 
‘Exponential’ distribution for continuous variables and the 
‘Poisson’ or ‘Binomial’ for discrete and categorical variables.  
The parameters of these distributions (e.g. the mean and 
variance for the normal distribution) may be estimated from 
expert judgement or sample data (Brown and Heuvelink 2007).  
For some numerical variables, and for most categorical 
variables, an appropriate parametric shape may not be available.  
In that case, each possible outcome and its associated 
probability must simply be listed in a ‘non-parametric’ pdf. 
 
For cases in which a parametric pdf is applied to an attribute 
that varies in space, some or all of the model parameters may 
vary in space.  Furthermore, the uncertain attributes and the 
positional uncertainties of objects may be statistically 
dependent in space.  For continuous numerical variables, 
quantification of the spatial dependence is not difficult when 
the normal distribution and second-order stationarity are 
assumed.  The latter means that the associated pdf has a 
constant variance and a spatial correlation that only depends on 
the distance between locations (Heuvelink 1998, Section 5.2).  
In that case, the spatial dependence structure may be estimated 
with a simple function (i.e., a semivariogram or correlogram), 
for which common geostatistical procedures can be used 
(Goovaerts 1997).  This approach also applies to the positional 
uncertainty of objects.  For example, it may be sensible to 
assume that the correlation between the primitive points of a 
deformable object only depend on the Euclidean distance 
between them. 
 
 

3. THE DATA UNCERTAINTY ENGINE 

3.1 Overview and current functionality of DUE 

The Data Uncertainty Engine (DUE) is a prototype software 
tool for assessing uncertainties in environmental data, storing 
them within a database, and for generating realisations of data 
to include in Monte Carlo uncertainty propagation studies (e.g. 
Heuvelink 1998, Van Niel et al. 2004, Karssenberg and De 
Jong 2005, Miehle et al. 2006).  The software is intended for 
researchers and practitioners who understand the problems of 
uncertainty in spatial data and models but do not have the time 
or background in uncertainty methods to design their own study 
with more generic tools, such as R or Matlab. 
 
The functionality currently supported by DUE includes: 

• A conceptual framework for guiding an uncertainty 
assessment, which is implemented through a graphical user 
interface;  

• The specification of a probability model for continuous 
numerical attributes, discrete numerical attributes and 
categorical attributes.  The attributes may be constant or 
may vary in space.  In fact, DUE also supports variables 
that vary in time.  Multivariate pdfs can be defined for 
groups of attributes and for the coordinates of objects; 

• Parametric pdfs for continuous (e.g. normal, lognormal, 
Weibull) and discrete numerical data (e.g. Poisson, 
binomial, uniform), with the option to define a non-
parametric pdf for discrete numerical and categorical data;    

• The use of expert judgement and/or sample data to help 
define a pdf.  Sample data can be used to improve the 
accuracy and reduce the uncertainty of attributes by 
ensuring that each realisation reproduces the sample values 
(i.e. conditional simulation); 

• The specification of correlations within a single object or 
attribute and cross-correlations between objects or attributes 
(only if the pdfs follow a joint normal distribution); 

• Aggregation of (uncertain) attribute values to larger spatial 
scales, including aggregation from points to blocks; 

• Efficient stochastic simulation from pdfs.  An exact, and 
fast, simulation routine is used for correlated normal 
variables if the correlation matrix is sufficiently small.  
Otherwise, simulation is conducted using the sequential 
simulation algorithm (Goovaerts 1997).  Sequential 
simulation relies on the Gstat executable (Pebesma 2004); 

• Import from and export to file (with a limited range of 
formats), as well as a ‘DUE-enabled’ database; 

• Use of the Java programming language, which is platform 
independent and may be executed on all operating systems 
that support a Java Virtual Machine;   

• A resource for developers, which is extensively documented 
in HTML format; 

• Release of the software under the General Public Licence; it 
is, therefore, free to use, modify and distribute.  

 
 
3.2 Performing an uncertainty assessment  with DUE 

An uncertainty assessment with DUE is separated into five 
stages, namely: 
 
1 Loading (and saving) data (“Input”); 
2 Identifying the causes or ‘sources’ of uncertainty 

(“Sources”); 
3 Defining an uncertainty model for the combined sources of 

uncertainty (“Model”); 
4 Reflecting on the quality or ‘goodness’ of the model 

(“Goodness”); 
5 Simulating from an uncertainty model for visualisation and 

Monte Carlo uncertainty propagation studies (“Output”). 
 
These stages are presented as ‘tabbed windows’ in DUE.  An 
uncertainty assessment may involve sequentially navigating 
through these windows or entering at an arbitrary point, 
depending on the aims of a session, which may include 
assessing uncertainty, modifying or simulating from an existing 
uncertainty model.  Stages 2 and 4 (describing the sources of 
uncertainty and assessing goodness) may be skipped, but are 
useful for structuring an uncertainty assessment and for quality 
control, respectively.  A searchable library of uncertainty 
sources is provided for this purpose. 
 
Figure 1 presents the “Input” window of DUE.  As indicated 
above, data may be loaded into DUE from file or from a 
database, and are stored within DUE as objects, whose 
positions may be uncertain, and attributes, whose values may be 
uncertain.  Once imported, an uncertainty model may be 
defined for the objects and attributes selected in the opening 
dialog.  In the first window of the “Model” pane, an uncertainty 
model structure is chosen for the selected objects and attributes.  
If sample data are available, they are selected here.  In the 
absence of sample data, an uncertainty model must be defined 
through expert judgement alone.  If the uncertainties are 
assumed spatially correlated, then a correlation model must be 
defined in a subsequent window (Figure 2). 
 
Once complete, an uncertainty model can be used to generate 
realisations of the uncertain objects and attributes in the 
“Output” window (Figure 3).  In order to simulate from an 
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uncertainty model, the output scale, the number of realisations 
and the location for writing data must be specified. 
 
 

 
 

Figure 1.  The “Input” window of DUE showing one imported 
object with three attributes. 

 
 
 

 
 

Figure 2.  Defining a correlation function in DUE. 
 
 

 
 

Figure 3.  The “Output” window of DUE to generate 
realisations of uncertain objects. 

 
 

4. THREE EXAMPLES OF REAL−−−−WORLD 
APPLICATIONS OF DUE 

4.1 Uncertainty analysis of the GeoPEARL pesticide 
leaching model 

In the new Dutch decision tree for the evaluation of pesticide 
leaching to groundwater, data on the spatial distribution of soils 
are used by the GeoPEARL model to calculate the 90th 
percentile of the leaching concentration in the area of potential 
usage.  Until recently it was not known to what extent the 
uncertainties in soil and pesticide properties propagate to the 
predicted leaching concentrations.  Therefore, a study was set 
up to quantify the uncertainties in the soil and pesticide data 
and analyse their contribution to the uncertainty in the leaching 
concentrations (Van Den Berg et al. 2007).  The contribution 
from uncertain soil properties (e.g. soil horizon thickness, 
texture, organic matter content hydraulic conductivity and water 
retention characteristics) was compared to that caused by 
uncertainties in the most important pesticide properties, i.e. the 
half-life of transformation in soil (DT50) and the coefficient of 
sorption on organic matter.  Firstly, the uncertainties in the soil 
and pesticide properties were quantified.  Next, a regular grid 
sample of points covering the whole of the agricultural area in 
the Netherlands was randomly selected.  At the grid nodes, 
realisations from the probability distributions of uncertain 
inputs were generated and used as input to a Monte Carlo 
uncertainty propagation analysis.  It turned out that 
uncertainties in DT50 and Kom contributed most to the 
uncertainty in the leaching concentrations. 
 
In this study, DUE was used to generate 500 realisations of the 
uncertain pesticide properties for three representative 
substances.  Extreme values in DT50 and Kom are common and 
both attributes were therefore represented by lognormal 
distributions.  Literature studies on the variability in the rate of 
degradation and sorption coefficient of various pesticides in 
different soils revealed that the coefficient of variation was 
about 25 per cent for both attributes (Allen and Walker 1987).  
Mean values of the log-tranformed properties were also taken 
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from the literature.  Correlation between DT50 and Kom was 
ignored. 
 
 
4.2 Uncertainty analysis of a regionalised water quality 
model 

The influence of input data and parameter uncertainty of diffuse 
emission sources on the summer averaged phosphorus and 
nitrogen concentrations at the outlet of the Regge river 
catchment was analysed for 1999 (Bijlsma et al. 2006).  The 
Regge is a small river running through the East of the 
Netherlands and a small part of Germany.  The catchment area 
is about 1000 km2.  The soil type is mainly sandy and the main 
land use is a mixture of livestock and arable farming, with crops 
feeding the livestock and the livestock providing manure to the 
arable operations.  The average phosphorus and nitrogen 
concentrations were computed with the NL-CAT model 
(Schoumans et al. 2005), which has a soil and groundwater flow 
module, a soil nutrient cycle and leaching module, a surface 
water flow module and a surface water quality module. 
 
The uncertainty analysis focused on several important 
uncertainty sources. These were fertilizer application load, 
phosphorus background concentration of the groundwater, gas 
diffusion parameters in soil; and iron and aluminium content of 
the soil (0−120 cm).  DUE was used to generate realisations of 
the iron and aluminium concentrations to be used in the Monte 
Carlo uncertainty propagation analysis.  Using a dataset of 168 
point observations, the mean, variance and correlogram of the 
iron and aluminium concentrations were determined and 
conditional sequential Gaussian simulation was used to 
generate 400 realisations of both attributes.  Because iron and 
aluminium concentration are correlated with soil type, the 
statistical model that was designed allowed different means and 
standard deviations per soil type.  By subtracting these means 
from the observed values and dividing by the standard 
deviation, residuals at the 168 points were obtained, for which 
the spatial correlation structure was assessed in DUE.  Although 
in principle all steps could have been done with DUE, it turned 
out to be more efficient to run the standardisation and 
destandardisation outside DUE and use DUE only to 
characterise and simulate the spatially correlated residual. 
 
 
4.3 Handling positional uncertainty in a spatial planning 
project 

The Dutch Ministry of Housing, Spatial Planning and the 
Environment aims to have digital, exchangeable and 
comparable spatial plans.  The new spatial planning law 
therefore compels the use and development of digital and 
exchangeable plans.  However, first experiences show that 
uncertainty is an important factor that hinders the comparability 
of spatial plans.  Therefore, a project was initiated that 
addresses uncertainty in spatial planning and aims to provide 
tools for handling uncertainty in spatial planning, such that the 
transparency of spatial planning processes is improved 
(Vullings et al. 2007).  Based on a general taxonomy for 
uncertainty (Fisher et al. 2005), a taxonomy of uncertainty for 
spatial planning was developed.  In this taxonomy, the sources 
of uncertainty in plans, processes and procedures and their 
possible solutions are visualised.  One of the many aspects that 
were considered was the positional uncertainty in delineated 
breeding bird areas.  In conventional analyses, these areas have 
exact spatial boundaries but in reality there is large uncertainty 

about where a breeding bird area begins and ends.  Therefore, 
one of the goals of the project was to analyse how positional 
uncertainty about breeding bird areas would affect the outcome 
of a complex spatial planning process for the province of 
Noord-Brabant. 
 
The shape files of the breeding bird areas were loaded into DUE 
and a statistical model (pdf) of the uncertain position of the 
polygons was built.  Because no training data were available, 
the model was entirely based on expert judgement.  Realistic 
values for the standard deviations in the x- and y-coordinates 
and the correlation between neighbouring vertices of each 
polygon were defined.  It was assumed that the standard 
deviations in the x- and y-directions were equal.  The 
correlation was assumed to depend only on the distance 
between points, whereby a Gaussian-shaped correlogram was 
used.  DUE was then used to simulate 100 possible realities of 
the delineated breeding bird areas.  Several of the simulated 
areas were topologically corrupt. These realisations were 
discarded and replaced by new simulations.  After running the 
entire automated spatial planning process, it turned out that the 
positional uncertainty about the breeding bird areas marginally 
affected the final plan. 
 

 
5. DISCUSSION AND CONCLUSIONS 

DUE was developed to satisfy the need for an error-aware GIS. 
Even though the theoretical concepts behind the tool may be 
sound and represent the state-of-the-art, the usefulness of the 
tool in practice can only prove itself by application to real-
world problems.  In this paper, we have briefly reported on the 
use of DUE in three projects that applied uncertainty analysis in 
different settings.  Although DUE was able to do the job it was 
asked to do in all three cases, the experiences were not entirely 
positive.  It turned out that the flexibility of DUE was 
somewhat limited and that it could not store and simulate all 
uncertain objects considered in the analyses.  Some of the 
uncertain inputs had to be simulated outside DUE in a more 
flexible programming environment (i.e., Matlab).  Also, the 
user-interfacing of DUE may still be improved and the tool 
does not yet seem to be entirely free of bugs. 
 
In spite of these shortcomings, there is no doubt that DUE has 
the potential to be the first error-aware GIS that is used by GIS 
practitioners at large.  However, for this to happen the prototype 
DUE must be further elaborated and improved.  Feedback from 
current users is important.  In this respect, it is encouraging that 
DUE is used in other projects as well (e.g. De Bruin et al. 2007) 
and that it is part of the MSc GeoInformation programme of 
Wageningen University.  Incorporating DUE and the 
underlying theories and methods in teaching is important also 
because it ensures that the next generation of GIS specialists is 
aware of spatial data quality issues and knows of the tools that 
can assist GIS users in managing spatial accuracy. 
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